La pandemia ha eluso i sistemi predittivi di intelligenza artificiale

Intelligenza artificiale generale

Quasi di colpo l’intera popolazione di un Paese (e successivamente di molti altri Paesi e interi continenti) smette di andare al cinema, di cenare al ristorante, non fa quasi più carburante, usa molte più ore di Internet e cerca di acquistare online mascherine chirurgiche a iosa, guanti in lattice e cuffie con microfono.

I modelli di machine learning che fino a quel momento cercavano di prevedere i nostri acquisti, i nostri comportamenti e magari di influenzare le nostre abitudini iniziano a sbagliare tutto. Non comprendono quello che succede (a essere pignoli non lo “comprendevano” neanche prima, ma almeno riuscivano a prevederlo) e diventano di colpo inutili, dannosi, o perlomeno inaffidabili.

La pandemia ha mostrato tutta la fragilità di certi modelli di machine learning, che non sono abituati a gestire cambiamenti repentini dopo anni di variazioni graduali. Chi può ha messo mano al codice inserendo modifiche e correzioni manuali, ma non tutti sono in grado di farlo: molte aziende acquistano soluzioni di intelligenza artificiale senza avere poi al loro interno personale con le competenze necessarie per gestirle. E se lasciate incontrollate alcune automazioni – pensiamo alla finanza, alla logistica o agli acquisti – possono causare danni economici non indifferenti. Come ad esempio i sistemi che effettuano ordini automatici di materie prime deperibili, per la lavorazione o la rivendita, anche là dove invece (e gli umani questo già lo sanno) le vendite si stanno per fermare e lo resteranno a lungo. Se lasciata senza controllo l’AI rischia di riempire un magazzino di prodotti che andranno a male senza essere mai venduti.

I modelli predittivi hanno fallito il loro primo vero appuntamento con un cambiamento epocale – certo, di quelli che si trovano solo nei libri di storia – e nel settore dell’intelligenza artificiale questi problemi non sono presi sottogamba. Sappiamo tutti che il machine learning lavora con i dati che gli vengono forniti e non ha la capacità che abbiamo noi umani di prendere un’informazione in un certo ambito (“si sta diffondendo un virus che creerà un’epidemia”) e applicarla a un ambito completamente diverso (“devo disdire il viaggio del mese prossimo”, oppure “la prossima settimana non ci sarà bisogno di ordinare tutto quel cibo per il mio ristorante”).

Ma questa débâcle non fa che dare linfa a chi oggi si batte per ridurre l’importanza del deep learning “spinto”, arricchendolo (o condizionandolo) con elementi simbolici, conoscenze già acquisite che integrino ragionamento e intuizione per “guidare” le reti neurali, cercando di far loro evitare aberrazioni e stranezze.

Chi però secondo me ha colto nel segno uno degli aspetti principali del problema è Thomas G. Dietterich, professore emerito presso la Oregon State University ed ex presidente della Association for the Advancement of Artificial Intelligence (AAAI), che in un tweet di risposta al thread di Gary Marcus ha evidenziato come una delle caratteristiche di un sistema di machine learning dovrebbe essere quella di segnalare episodi troppo anomali. Una spia che dovrebbe far dire al modello “attenzione, qualcosa di grosso mi ha portato fuori strada: non sono più affidabile“.

Con un segnale del genere da parte del modello si potrebbero attivare tutta una serie di azioni, come un blocco delle procedure automatiche, un avviso ai controllori umani e magari una prima analisi su quali siano i dati che il sistema ritiene così divergenti da aver generato un’eccezione.

Ma al di là di questo campanello d’allarme, i “singhiozzi” che molti modelli predittivi hanno avuto durante i primi giorni o le prime settimane di pandemia devono far riflettere chi, come spesso accade, cerca di semplificare l’intelligenza artificiale o l’automazione come soluzione chiavi-in-mano. Come mi piace ricordare a chi ogni tanto mi chiede una definizione, se è artificiale non è intelligente.

La vera intelligenza artificiale è un’aspirazione, un concetto in fieri, ne parliamo tanto ma non ci siamo ancora arrivati. I sistemi attuali non generalizzano e non capiscono causa ed effetto. Non abbiamo una intelligenza artificiale che legge le notizie, che deriva informazioni da varie fonti e che riesce a metterle insieme, comprendendo intimamente quello che sta succedendo. Ma anche se riuscisse a farlo, avere un software che prende decisioni innovative basandosi su questa mole di informazioni, così diverse, variegate e non strutturate, è di per sé un altro scoglio che ancora non siamo riusciti a superare. Nel caso poi ci riuscissimo, avremmo creato una intelligenza artificiale generale, o “forte”, di quelle che vediamo nei film di fantascienza. E in quel caso gli scenari cambierebbero radicalmente e per sempre, altro che pandemia.

Mi sono appassionato all'intelligenza artificiale da quando ho potuto vedere all'opera i primi sistemi esperti negli anni '80. Già dal 1989 mi occupavo di cybersecurity (analizzando i primi virus informatici) ma non ho mai smesso di seguire gli sviluppi dell'AI. Dopo la laurea in Management ho conseguito una specializzazione in Business Analytics a Wharton, una certificazione Artificial Intelligence Professional da IBM e una sul machine learning da Google Cloud. Sono socio fondatore del chapter italiano di Internet Society, membro dell’Associazione Italiana esperti in Infrastrutture Critiche (AIIC), della Association for the Advancement of Artificial Intelligence (AAAI) e dell’Associazione Italiana per l’Intelligenza Artificiale (AIxIA). Dal 2002 al 2005 ho servito il Governo Italiano come advisor del Ministro delle Comunicazioni sui temi di cyber security. Oggi partecipo ai lavori della European AI Alliance della Commissione Europea e a workshop tematici della European Defence Agency e del Joint Research Centre. Questo blog è personale.